a2 United States Patent

Levenshteyn et al.

US009124593B2

US 9,124,593 B2
Sep. 1, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(735)

(73)

")

@

(22)

(86)

87

(65)

(1)

(52)

(58)

MANAGING AN EXECUTION OF A
COMPOSITE SERVICE

Inventors: Roman Levenshteyn, Aachen (DE);
Konstantinos Vandikas, Solna (SE);
Eugen Freiter, Berlin (DE); Ioannis
Fikouras, Stockholm (SE)

TELEFONAKTIEBOLAGET L M
ERICSSON (PUBL), Stockholm (SE)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 359 days.
Appl. No.: 13/519,925
PCT Filed: Dec. 31, 2009

PCT No.:

§371 (D),
(2), (4) Date:

PCT/EP2009/009345

Sep. 6, 2012

PCT Pub. No.: WO02011/079854
PCT Pub. Date: Jul. 7, 2011

Prior Publication Data

US 2013/0013781 Al Jan. 10, 2013
Int. Cl.
GO6F 15/173 (2006.01)
HO4L 29/08 (2006.01)
(Continued)
U.S. CL
CPC .......... HO4L 67/1008 (2013.01); HO4L 67/101

(2013.01); HO4L 67/1023 (2013.01); HO4L
67/2838 (2013.01); GO6F 11/3006 (2013.01);

(Continued)
Field of Classification Search

None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2008/0320497 Al* 12/2008 Tarkomaetal. ............. 719/319

2010/0218202 Al
2010/0318658 Al* 12/2010 Zorn etal.

8/2010 Fikouras et al.
.................... 709/226

FOREIGN PATENT DOCUMENTS

EP 1879358 Al 1/2008
EP 1978758 Al  10/2008
(Continued)
OTHER PUBLICATIONS

Niemdller, J. et al. “Aspect Orientation for Composite Services in the
Telecommunication Domain.” Service-Oriented Computing, Nov.
24, 2009, pp. 19-33, Springer Berlin Heidelberg, Berlin.

(Continued)

Primary Examiner — Chris Parry
Assistant Examiner — Caroline Jahnige
(74) Attorney, Agent, or Firm — Coats & Bennett, PLLC

(57) ABSTRACT

The present invention relates to a method for managing an
execution of a composite service, the composite service com-
prising constituent services. The method comprises providing
(101) first service complexity measures indicating a com-
plexity related to executing a number of constituent services
of the composite service by a first service execution node,
providing (103) second service complexity measures indicat-
ing a complexity related to executing the number of constitu-
ent services of the composite service by a second service
execution node, determining (105) a first total complexity
measure upon the basis of the first service complexity mea-
sures, determining (107) a second total complexity measure
upon the basis of second service complexity measures, and
selecting (109) either the first service execution node or the
second service execution node in dependency of at least one
of: the first total complexity measure or the second total
complexity measure for executing the number of constituent
services of the composite service.

20 Claims, 8 Drawing Sheets

Pre-stored
omplexity measures| 125

101

Evaluating
1001 128 ,\_L composite service

103 113 115
§ §

Providing first Providing second Providing third Providing fourth
service complexity || service complexity || service complexity || service complexity
measures megsures measures measures
105 D first ||D second|| D ing third || Dt fourth
~d total fexi total d total total
measure measure measure measure
‘ 107 "7 119
121
D ing minimum i ploxty measure

109

Selecting service execution node

"

S

Initigting service
exgcution




US 9,124,593 B2
Page 2

(1)

(52)

(56)

EP
WO

Int. CI.
HO4L 29/06 (2006.01)
GOGF 11/30 (2006.01)
USS. CL
CPC ......... GOGF 11/3051 (2013.01); HO4L 65/1016
(2013.01); HO4L 67/02 (2013.01); HO4L 67/16
(2013.01)

References Cited

FOREIGN PATENT DOCUMENTS

2015510 A2 1/2009
2008119364 Al  10/2008

OTHER PUBLICATIONS

3rd Generation Partnership Project; “Technical Specification Group
Services and System Aspects; Study on Architecture Impacts of
Service Brokering,” Release 8, 3GPP TR 23.810, v. 8.0; Sep. 2009,
pp. 1-26; 3GPP, Mobile Competence Centre, 650, route des Lucioles,
06921 Sophia-Antipolis Cedex, France.

3rd Generation Partnership Project; “Technical Specification Group
Services and System Aspects; Network Architecture,” Release 9,
3GPP TS 23.002, v. 9.2, Dec. 2009, pp. 1-92; 3GPP, Mobile Com-
petence Centre, 650, route des Lucioles, 06921 Sophia-Antipolis
Cedex, France.

* cited by examiner



US 9,124,593 B2

Sheet 1 of 8

Sep. 1, 2015

U.S. Patent

uonnoaxe
821Al8s Bunen|

_

8poU UoNNI8Xe 821A18S Bulajes

ainsesw Axa|duiod slisodwod wnwiuiw Buunelsg

61

{

FAN

L01

alnsesw

Alxadilon 1o}
yunoy Buiuiuisisg

ainseawl
Aadwod 1ol
pJiyl Bululeleg

ainseall
Alxajdwiod |e101
puooses Buuiwisleg

ainseal
Axajdwod g0}
184y BuluiwselsQ

N

I _ 1 _
salnsesul sainseall seinsgaw seJnsesw
Mixeidwod aowias || Alxs|dwod adiwies || Alxsjdwod ediaies || Alxe|dwod 8diaes
yuno} Buipiacid ~ pJu3 Buiplaoid _puo2ss Buipirolg 1541} Buiplaold ™
13" el €0l
uonEWLOUl
GZ | — [58insesu Axeidwod 00IIBS B1SOALLO) T ¢Z1
paIoIs-aid Bunenieay

L By

bEE

601

(¥4

G0l

V]

00}



US 9,124,593 B2

Sheet 2 of 8

Sep. 1, 2015

U.S. Patent

AVE
OONH
lapiaoid
- Heniuisuel | 10}09|9% SENNDIIE ETg faxarduion —
\ \ \ ) \
£0C c0c €0 10Z




US 9,124,593 B2

Sheet 3 of 8

Sep. 1, 2015

U.S. Patent

Go¢e

‘

¢ aubug
uvoisodwo)

/

.S

9s

coge

x

2 mc_mcm
uoisodwo)

2015

\\

Gs S

L subugy
uonisodwo)

7

FA

¢ b4



U.S. Patent Sep. 1, 2015 Sheet 4 of 8 US 9,124,593 B2

———- 51, 53, S4

401
/
service template
Y
service template
453

Fig. 4



US 9,124,593 B2

Sheet 5 of 8

Sep. 1, 2015

U.S. Patent

LS

609

G 'bi4

~
-\

| ~~21idD) 901A9S

-I\\I\L

i

ele|dwe) eS|

!

U 08

1\.\\ ~ glEIUe] 821AI8S

agdwe Baes ]

U gog

o et /

\ @olg

A\
L1S — Glg

h WBLBBIES [ELUON|PUOD MJ(
€S

!

818(diue] O3NS

$

aepuia) amams

32019




US 9,124,593 B2

Sheet 6 of 8

Sep. 1, 2015

U.S. Patent

g B4

{ddwix = jo2030.d)

\\Ifmom

(UOSSOUB = JOPUBA) B
(18660 ||ED = UOIDUNY BDIAISS)

\i? 109




US 9,124,593 B2

Sheet 7 of 8

Sep. 1, 2015

U.S. Patent

1074

02

€04

pd

dis :j000304d

ZAx Jopuana

BuibBessaw :uonouny eo|AI9S
(J321A19S BWeu aOIAI9S

H921AI9S/WI0D JBAISS 11N
ZAx Jopusa

18660 Jjeos :uonoun) sojnes
§901AI8S BBl 90IAI8S

ddwx :j00010.d

2AX :JOpUDA

BuiBessau :uoRIuUNy adIAISS
DBIIAIDS [BWEBU BDIAISS

WE2IAIBS/UI0D JBAIBS 1IN
UOSSIUS JJOPUBA

18660 e (uonouny aoings P
VR0|AI8S BWBU BDIAIDS

104



US 9,124,593 B2

Sheet 8 of 8

Sep. 1, 2015

U.S. Patent

0

/

8 €08

* -/

{sws = j000j01d)

(ddwix = j0o030.d)

=

andlL

ERRLVE!

£08

plob=adAy ajyosd Jasng

* 108

(Jopuan pauajaidg = JOpuaA) 9
(12660 ||22 = uonOUN) BJIAISS)

g ‘b4



US 9,124,593 B2

1
MANAGING AN EXECUTION OF A
COMPOSITE SERVICE

TECHNICAL FIELD

The present invention pertains to managing composite ser-
vices in particular in a communication network.

BACKGROUND

One of the emerging communication technologies for
delivering multimedia services across fixed and mobile
access networks is the I[P Multimedia Subsystem (IMS). The
network architecture according to IMS comprises a service
layer, control and connectivity layers, and an access layer.
The control layer comprises call session control functions
(CSCFs) forming central nodes for the provision of the SIP
signaling (SIP: Session Initiation Protocol). The SIP protocol
is one of the core technologies used by IMS for controlling the
multimedia sessions combining voice and data streams.

A further core component of the IMS network architecture
is the Service Capability Interaction Manager (SCIM) which
was introduced in the 3GPP TS 23.002 standard as a function
within a SIP Application Server domain of the IMS architec-
ture. The role of the SCIM is that of a service broker in more
complex service interaction scenarios which cannot be sup-
ported through the service filtering mechanism. The SCIM as
proposed to the 3GPP uses an ISC interface to enable com-
posite service behavior leveraging simpler service capabili-
ties. In practical terms, a “capability” is a system component
that may be used, presumably with other components, to
implement a “service” that is packaged and delivered to end
users of the network. For example, a group list server and a
presence server may both be considered “capabilities™ that
are used to implement a sophisticated conferencing service.
In this regard, an open issue in the 3GPP Release 9 specifi-
cation is the orchestration of interaction between “capabili-
ties” in the larger network which are represented as SIP
Application Server instances.

SCIM can be implemented using service composition
approach, where services, also called constituent services,
may be aggregated to composite services. Composite services
address complex user requirements that usually can not be
covered by existing services. Hence, composite services offer
added value in the form of new functionality compared to the
sum of the functionality of their building blocks.

By way of example, some basic services and enablers may
enable a weather forecasting service and a positioning data
service. Both can be used individually, however combining
them into a composite service that provides a location based
weather forecast creates a new type of functionality with an
added value. For this reason, composite services are often
referred to as value added services. A location based service,
in this example a location based weather forecast, may be
created out of two existing components, namely an enabler
that provides location information and a weather forecast
service.

The exposure of these functions, such as SOA services
(SOA: service oriented architecture), allows an application to
individually discover them by querying a service repository
and then individually bind these services. The process of
discovering appropriate services as well as the far more com-
plex logic for binding these services and making use of their
functionality is implemented in the application itself. The
developer of the application logic may consider and cover all
eventualities at design time, e.g. faulty services, possibly a
number of different technologies/formats, and a host of other

10

20

25

30

40

45

2

issues that are not directly related to the actual end-user
service, but rather to the usage of the enabling services.

The service composition functionality usually introduces
an entity—the service composition engine—that takes care of
this complexity for the application. In this scenario the appli-
cation implements just its core logic, whereas the enabling
functionality such as the “location-based weather forecast™ is
exposed by the composition engine as a single service that
may be easily discovered and bound by the application. In the
given example, the composition engine executes application
logic in the form of the definition of the composite service
“location-based weather forecast”. This composite service
describes the type of required services, so that the engine—in
particular at run-time—may discover, bind and execute
appropriate services. Composition functionality, conse-
quently, allows for great flexibility e.g. in handling events
such as a faulty enabler. In this case, the engine could bind an
alternative service without any disruption of the end-user
application.

A service composition may enable the decoupling of appli-
cation logic and enabling further functions. By extracting
parts of the logic from the application and implementing it in
a formalized way with the help of a composition entity, i.e.
engine, a number of advantages become possible. The appli-
cation logic becomes easily reusable and adaptable, it also
becomes easier to implement since it may make use of the
event-driven facilities of the composition engine.

Decoupling of application logic and exposure of function-
ality as reusable services is clearly facilitated by component-
based software development and modeling of the application
functionality. On the one hand, software components or
groups thereof already represent cleanly defined units of
functionality i.e. good candidates for services. Consequently,
understanding the application functionality based on its mod-
eling is the basic requirement for defining aggregate applica-
tion functionality in a composition.

Clearly, composition sessions may contain data. These
data are usually manipulated by the process according to
instruction in its composite service description, i.e. according
to a wish of a composite service designer. The data is either
directly manipulated by these instructions, e.g. assigning a
value to a variable, or indirectly, e.g. as results of services
invocations. Sometimes, this kind of composition session
state data is also called “Shared State Data”, because they
represent the state shared between all services participating in
a given composition session.

IMS was designed to deliver real-time, e.g. voice, and
soft-real-time, e.g. SMS, services to customers. Accordingly,
all nodes including SCIM should fulfill real-time or at least
soft-real-time requirements, wherein, according to frequent
customer requirements, a latency imposed by a SCIM node
during an IMS call establishment may not exceed few dozens
of milliseconds. However, with increased complexity of the
composite services, the additional latency introduced by the
SCIM may become a challenging issue. One of the main
sources of additional latency is the invocation of constituent
services. In this regard, latency is sum of time required by the
constituent service to execute its internal logic and of the
network latency between SCIM node and the constituent
service. In networks with more then one SCIM node, the
selection of the SCIM node for execution of composite ser-
vice may also have an impact on a latency of a composite
service.

Accordingly, there is a need for efficiently managing an
execution of'a composite service in a communication network



US 9,124,593 B2

3

in which service execution nodes, e.g. composition engines,
are provided for executing constituent services of the com-
posite service.

SUMMARY OF THE INVENTION

The invention is based on the finding that an execution of a
composite service may efficiently be managed if at least some
constituent services of the composite service are executed by
a service execution node which is selected from a plurality of
service execution nodes such that the complexity related to
executing the constituent services by the selected service
execution node, e.g. latency, is minimized.

As the service execution nodes may be arranged in a com-
munication network, different latencies may be expected
when executing the constituent services by different service
execution nodes. By way of example, the service execution
nodes may be formed by composition engines, wherein the
composite service latency may be reduced when selecting the
composition engine which has the smallest impact on the
composite service latency. Further latency reduction may be
achieved when changing the composition engine which is
responsible for executing the composite service during the
execution of the composite service. Thereby, the execution
process may be moved from one composition engine to fur-
ther reduce complexity. Generally, the optimization approach
leading to the complexity reduction may be based upon opti-
mizing any network related costs, i.e. complexity measures,
related to executing composite services such as total band-
width or energy consumption.

According to an aspect, the invention relates to a method
for managing an execution of a composite service which may
comprise constituent services. The method comprises provid-
ing first service complexity measures indicating a complexity
related to executing a number of constituent services of the
composite service by afirst service execution node, providing
second service complexity measures indicating a complexity
related to executing the number of constituent services of the
composite service by a second service execution node, deter-
mining a first total complexity measure upon the basis of the
first service complexity measures, determining a second total
complexity measure upon the basis of second service com-
plexity measures, and selecting either the first service execu-
tion node or the second service execution node in dependency
of at least one of: the first total complexity measure and/or the
second total complexity measure for executing the number of
constituent services of the composite service. Generally, the
method may correspondingly be applied in a network with
any number of service execution nodes.

By way of example, the first and second execution nodes
may be formed by composition engines arranged in a com-
munication network at e.g. different locations. Therefore, the
complexity measures may relate to network complexity mea-
sures being determined by network characteristics such as
bandwidth, transmission delays, available transmission slots
or latencies. The decision which composition engine
executed the composite service at the minimal network
related costs can be made before or after the composite ser-
vice execution has started.

According to an embodiment, the method comprises initi-
ating the execution of the number of constituent services of
the composition service by the selected service execution
node. By way of example, in order to initiate the execution of
the number of constituent services, an execution request may
be transmitted towards the selected service execution node
over a communication network. The execution request may

10

15

20

25

30

35

40

45

50

55

60

65

4

be transmitted by another service execution node or by a
control node such as a composition execution agent or
another network entity.

According to an embodiment, session information relating
to the execution of the composition service may be transmit-
ted towards the selected service execution node. The session
information may comprise a session worktlow indicating how
to execute the constituent services within the framework of
the composite service. The session information may further
comprise control information controlling the execution of the
number of constituent services by the selected service execu-
tion node. The session information may be transmitted by a
control entity which is in charge with controlling the execu-
tion of the composite session. However, the session informa-
tion may be transmitted towards the selected service execu-
tion node by another service execution node which may be in
charge with executing e.g. another part of the composite
service in particular in a distributed computing network sce-
nario.

According to an embodiment, the method may further
comprise determining an initial complexity measure accumu-
lated during previous executions of the composite service,
and selecting either the first or the second service execution
node in further dependency of the initial complexity measure.
The initial complexity measure may e.g. reflect a complexity
relating to executing e.g. another number of constituent ser-
vices of the same composite service session prior to executing
the number of the constituent services by the selected service
execution node. However, the initial complexity measure
may also relate to previous executions of the composite ser-
vice during previous composite service sessions. In order to
take the initial complexity measure into account, either the
service complexity measures or the total complexity mea-
sures may be increased by the initial complexity measure.
However, the initial complexity measure may be taken into
account as an additional parameter when e.g. determining the
total complexity measures upon a basis of a mathematical
optimization approach such as the least squares algorithm.

According to an embodiment, the first service execution
node is selected if the first total measure does not exceed or is
smaller than the second total complexity measure. Corre-
spondingly, the second service execution node may be
selected if the second total complexity measure does not
exceed or is smaller than the first total complexity measure. In
order to determine which total complexity measure is the
minimum one, the total complexity measures may be com-
pared with each other or, respectively, with a complexity
threshold. The comparison may be performed by means of a
comparator comparing e.g. numbers representing the total
complexity measures. Therefore, the service execution node
which is associated with the total complexity measure below
the complexity threshold may be selected.

According to an embodiment, the composite service may
comprise a further number of constituent services, wherein
the method may comprise providing third service complexity
measures indicating a complexity related to executing the
further number of constituent services by the first service
execution node, providing fourth service complexity mea-
sures indicating a complexity related to executing the further
number of constituent services of the composite service by
the second service execution node, determining a third total
complexity measure upon the basis of the third service com-
plexity measures, determining a fourth total complexity mea-
sure upon the basis of the fourth service complexity mea-
sures, and, i.e. during run-time, selecting either the first
service execution node or the second service execution node
in dependency of at least one of: the first total complexity



US 9,124,593 B2

5

measure and/or the second total complexity measure and/or
the third total complexity measure and/or the fourth total
complexity measure for executing the further number of con-
stituent services of the composite service. Thus, the service
execution node which is to execute the further number of
constituent services may be selected upon the basis of all
available total complexity measures, so that in particular the
complexity relating to executing the first number of constitu-
ent services may also be taken into account. However, the
service execution node which is to execute the second number
of constituent services may be selected upon the basis of only
the third and fourth total complexity values, so that that only
complexity which relates to executing the second number of
constituent services is taken into account for service execu-
tion node selection.

According to an embodiment, the composite service may
comprise a further number of constituent services, e.g. the
further number of constituent services mentioned above. The
method may comprise providing third service complexity
measures indicating a complexity related to executing the
further number of constituent services by the first service
execution node, providing fourth service complexity mea-
sures indicating a complexity related to executing the further
number of constituent services of the composite service by
the second service execution node, determining a third total
complexity measure upon the basis of the third service com-
plexity measures, determining a fourth total complexity mea-
sure upon the basis of the fourth service complexity mea-
sures, determining a minimum composite complexity
measure upon the basis of the total complexity measures, and
selecting either the first service execution node or the second
service execution node to execute the respective number of
constituent services at the minimum composite complexity
measure. Preferably, the minimum composite complexity
measure is determined upon the basis of all available total
complexity measures.

According to an embodiment, the method may further
comprise evaluating composite service information to deter-
mine the number of constituent services which are to be
executed when executing the composite service. The com-
posite service information may indicate at least one of: a
structure of the composite service, the constituent services
and session information, e.g. a workflow, relating to the
execution of the composition service. The composite service
information may be formed by the service skeleton describ-
ing e.g. an application logic as disclosed in the documents
WO 2008/119364 Al and the EP 1 978 758 A1, both incor-
porated herein by reference.

According to an embodiment, the method may comprise
evaluating composite service information, i.e. the composite
service information mentioned above, to determine the first or
the second service complexity measures in dependency on a
conditional execution of at least one constituent service when
executing the composite service. The conditional execution
of constituent services may result from service execution
branches with conditional elements which may depend on the
run-time state or on the results of previously executed ser-
vices. Therefore, taking the conditional execution into
account enables a more precise determination of the service
complexity measures as, additionally, the run-time behavior
of the composite service may be taken into account.

According to an embodiment, the method may comprise
determining the service complexity measures upon the basis
of pre-stored service complexity measures related to a previ-
ous execution of the constituent services. The service com-
plexity measures may be determined upon the basis of a
case-based composite service estimation under the assump-

15

20

25

30

40

45

6

tion that the selection of services and branches under similar
service conditions results in the same composite service. The
service complexity measures may be determined or recalcu-
lated upon the basis of a service list indicating constituent
services along with service complexity measures.

According to an embodiment, the method may comprise
determining the service complexity measures upon the basis
of static information comprising at least one of: a composite
service template and/or a service description and/or a service
location, in particular in a communication network. The com-
posite service template may be provided e.g. by the composite
service information mentioned above and list either constitu-
ent services or requirements with respect to constituent ser-
vices for executing the composite service. Correspondingly,
the service description may be indicated by the above men-
tioned composite service information. The static information
provides service complexity measures which may be constant
at least within a certain time interval.

According to an embodiment, the method may comprise
determining the service complexity measures upon the basis
of' dynamic information comprising at least one of: composite
session data and/or statistical records about service execution
and/or a network load and/or a latency between network or
session nodes and/or a result of at least one previous execu-
tion of the composite session. Thus, the service complexity
measures determined upon the basis of the dynamic informa-
tion may vary over time.

According to an embodiment, the first and/or the second
total complexity measures may be obtained by summing up
the respective service complexity measures or evaluating a
complexity function, in particular a linear or a non-linear
complexity function, comprising the service complexity mea-
sures as function variables. In particular, the complexity func-
tion may enable a multivariate complexity optimization.

According to an embodiment, the composite service may
be at least one of: Internet Protocol Multimedia Subsystem
(IMS) composite service, an instance of a Business Process
Execution Language (BPEL) process, or an instance of a
Business Process Modeling Language (BPML) process, or an
instance of an Enterprise Service Bus (ESB) composite ser-
vice.

According to an embodiment, the first and/or the second
service execution node may be one of the following: a com-
position execution agent being adopted to operate according
to the IMS technology and/or a composite service engine
being adopted to operate according to the IMS technology
and/or a computing node in a distributed computing network,
in particular in a cloud computing network or in an ESB
environment.

According to an embodiment, the service complexity mea-
sures may comprise at least one of: latencies related to execut-
ing the respective constituent service by the respective service
execution node and/or time delays related to a data transfer
over a communication network between a service location
and the respective service execution node and/or network
resources such as bandwidth allocated to the respective ser-
vice execution node for executing a respective constituent
service or the number of constituent services. The service
complexity measures may respectively comprise only one of
the above mentioned parameters such as latency. However,
the respective service complexity measure may comprise,
e.g. in a cumulated fashion, several parameters, e.g. time
delays and latencies.

According to some aspects, the invention further relates to
amethod for the selection of the composition engine node for
the execution of a composite service in order to reduce the
network related costs introduced by invocation of constituent



US 9,124,593 B2

7

services, which may be applied before the execution of a
composite service has been started or during the execution of
a composite service and moving the execution process to
another composition engine node, if necessary.

According to a further aspect, the invention relates to a
service execution management entity for managing an execu-
tion of a composite service comprising constituent services
according the principle described herein. Preferably, the ser-
vice execution management entity comprises a complexity
provider for providing first service complexity measures indi-
cating a complexity related to executing a number of constitu-
ent services of the composite service by a first service execu-
tion node, and for providing second service complexity
measures indicating a complexity related to executing the
number of constituent services of the composite service by a
second service execution node. Further functionality of the
complexity provider is directly determined by the method
steps for providing the first and the second service complexity
measures according to the principles described herein.

The service execution management entity may further
comprise a complexity determiner for determining a first total
complexity measure upon the basis of the first service com-
plexity measures, and for determining a second total com-
plexity measure upon the basis of second service complexity
measures. Further functionality of the complexity determiner
is directly derivable from the method steps of determining the
first and second total complexity measure according to the
principles described herein.

The service execution management entity may further
comprise a service execution node selector for selecting
either the first service execution node or the second service
execution node in dependency of at least one of: the first total
complexity measure and/or the second total complexity mea-
sure for executing the number of constituent services of the
composite service. Further functionality of the service execu-
tion node selector is directly derivable from the method step
of selecting either the first or the second execution node
according to the principles described herein.

According to an embodiment, the service execution man-
agement entity may comprise a transmitter for transmitting
session information, e.g. a workflow, relating to the execution
of the composition service towards the selected service
execution node for executing the composite service.

According to an embodiment, the transmitter may further
be configured to transmit an execution request towards the
selected service execution node to initiate the execution of the
number of constituent services of the composition service by
the selected service execution node.

Further functionality of the service execution management
entity is directly derivable from the steps of the method for
managing an execution of a composite service according to
the principles described herein.

According to a further aspect, the invention relates to a
computer program for performing the method for managing
the execution of the composite service when the computer
program is executed on a computer.

According to a further aspect, the invention relates to a
programmably arranged network entity being configured to
execute the above mentioned computer program to perform
the method for managing the execution of the composite
service. The programmably arranged network entity may
comprise a memory and a processor for executing the com-
puter program. The programmably arranged network entity
may be a service execution node, in particular a service com-
position engine, or a computing node in a cloud computing

10

15

20

25

30

35

40

45

50

55

60

65

8

scenario or in an ESB environment or a service execution
agent or any other network entity being involved in executing
the composite session.

BRIEF DESCRIPTION OF THE DRAWINGS

Further embodiments will be described with reference to
the following figures, in which:

FIG. 1 shows a diagram of a method for managing an
execution of a composite service according to an embodi-
ment;

FIG. 2 shows a block diagram of a service execution man-
agement entity according to an embodiment;

FIG. 3 shows a distributed composition engine setup
according to an embodiment;

FIG. 4 shows service templates according to an embodi-
ment;

FIG. 5 shows an application skeleton with a conditional
element according to an embodiment;

FIG. 6 shows a template describing a service composition
according to an embodiment;

FIG. 7 shows service descriptions according to an embodi-
ment; and

FIG. 8 shows an application skeleton according to an
embodiment.

DETAILED DESCRIPTION

Before embodiments of the invention are described in
detail, it is to be understood that this invention is not limited
to the particular component parts of the devices described or
steps of the methods described as such devices and methods
may vary. It is also to be understood that the terminology used
herein is for purposes of describing particular embodiments
only, and is not intended to be limiting. It must be noted that,
as used in the specification and the appended claims, the
singular forms “a,” “an” and “the” include singular and/or
plural referents unless the context clearly dictates otherwise.

FIG. 1 shows a diagram of a method 100 for managing an
execution of a composite service with constituent services
according to some implementations. The method comprises
providing 101 first service complexity measures indicating a
complexity relating to executing a number of constituent
services by a first service execution node which is not
depicted in FIG. 1. Correspondingly, the method may com-
prise providing 103 second service complexity measures
indicating a complexity related to executing the number of
constituent services by a second service execution node
which s not depicted in FIG. 1. The method further comprises
determining 105 a first total complexity measure upon the
basis of the first service complexity measures, and determin-
ing 107 a second total complexity measure upon the basis of
second service complexity measures. The respective total
complexity measure may be determined upon executing a
complexity function which may be linear or non-linear using
the service complexity measures as function variables.

The method may further comprise selecting 109 either the
first service execution node or the second service execution
node depending on the first and/or the second total complex-
ity measure in order to execute the number of constituent
services.

Optionally, the method may further comprise initiating 111
the execution of the number of constituent services by the
selected service execution node. The step of initiating 111 the
execution of the number of constituent services may further
comprise transmitting an execution request towards the
selected service execution node to execute the number of



US 9,124,593 B2

9

Constituent services, and/or transmitting session informa-
tion, e.g. a workflow, relating to the execution of the compo-
sition service towards the selected service execution node.

According to some implementations, the composite ser-
vice may comprise a further number of constituent services.
Correspondingly, the method may comprise providing 113
third service complexity measures indicating a complexity
related to executing the further number of constituent ser-
vices, and providing 115 fourth service complexity measures
indicating a complexity related to executing the further num-
ber of constituent services of the composite service. The
method may further comprise determining 117 a third total
complexity measure upon the basis of the third service com-
plexity measures, and determining 119 a fourth total com-
plexity measure upon the basis of fourth service complexity
measures. The third total complexity measure and the fourth
total complexity measure may be used in the step of selecting
109 either the first or the second execution node.

Optionally, the method may comprise determining 121 a
minimum composite complexity measure upon the basis of
the total complexity measures, wherein in the step of select-
ing 109 either the first or the second service execution node
may be selected to execute the respective number of constitu-
ent services at the minimum composite complexity measure.

Prior to providing the number of constituent services, the
method may comprise evaluating 123 composite service
information, e.g. the service skeleton mentioned above, to
determine the number of constituent services and/or to deter-
mine the first or the second complexity measures. Alterna-
tively or in addition to the step of evaluating 123, the method
may comprise determining 125 the service complexity mea-
sures upon the basis of either pre-stored service complexity
measures related to previous executions of the constituent
services and/or upon the basis of static and/or dynamic infor-
mation.

For more complex composite services further improve-
ment of network related costs can achieved by changing
executing composition engine at later stage of composite
service execution. In this case, a part, i.e. the number of
constituent services, of the composite service is executed on
one composition engine, and another part, i.e. a further num-
ber of the composite service on another composition engine,
i.e. the execution process will moved to another composition
engine. Further, the executing composition engine may also
be replaced by another composition engine if for instance
information based on the selection was made has changed,
e.g. if a constituent service became unavailable or if network
properties such as topology or bandwidth have changed.

FIG. 2 shows a block diagram of a service execution man-
agement entity 200 comprising a complexity provider 201 for
providing service complexity measures, a complexity deter-
miner 203 for determining total complexity measures based
upon the service complexity measures provided by the com-
plexity provider 201, and a service execution node selector
205 for selecting one of the available service execution nodes
for executing the number of constituent services in depen-
dency of the total complexity measures provided by the com-
plexity determiner 203. Optionally, the service execution
management entity 200 may comprise a transmitter 207 for
transmitting composite service information, e.g. a workflow,
relating to the execution of the composite service towards the
selected service execution node over a communication net-
work according to a communication technology which may
be based on the IP communication technology. The transmit-
ter 207 may further be configured to transmit an execution
request towards the selected service execution node to trigger
initiating the execution of the number of constituent services.

10

15

20

25

30

35

40

45

50

55

60

65

10

The service execution management entity 200 may form e.g.
a composite service engine or any computing or network
entity involved in executing the composite service. The ele-
ments 201 to 207 of the service execution management entity
200 may be arranged within the same communication entity
such as e.g. a server. However, at least one or more of the
elements 201 to 207 may be located at difterent locations ofa
communication network. Further, at least one of the elements
201 to 207 may form a stand-alone physical node or may be
co-located with e.g. the selected service execution node such
as a composition engine.

According to some implementations, the complexity pro-
vider 201, forming e.g. a cost provider, may collect informa-
tion required for the calculation or determination of the net-
work related complexity measures, e.g. costs, such as latency
between composition engines and services. The cost infor-
mation may be provided to other network nodes via an appli-
cation protocol interface (API) which may be realized in the
transmitter 207. Optionally, the results of the cost calculation
may be cached and recalculated only in case of a change of
involved variables. Thus, according to some implementa-
tions, the complexity provider 201 may comprise a network
monitor observing the communication network and the ser-
vices. Further, a subscriber notification approach may be
implemented, e.g. in the transmitter 207, in order to notify
other network nodes, e.g. other session execution nodes,
about changes with respect to the complexity measures.

According to some implementations, the complexity deter-
miner 203 and/or the service execution node selector 205 may
perform an optimization analysis in order to select the best
suitable service execution node, e.g. a composition engine
node, to execute the composite service. Furthermore, the
service execution node selector 205 may contact the respec-
tive service execution node in order to trigger the execution of
the specific composite service on the contacted service execu-
tion node.

According to some implementations, the service execution
nodes may form service composition engines. In this respect,
a service composition engine is a service execution node that
provides a complex service, i.e. a composite service, by iden-
tifying and executing a number of constituent software com-
ponents, i.e. constituent services. Such a node may require
information about the constituent components for its opera-
tion. This information may indicate the constituent services
by way of e.g. service descriptions, description of the com-
posite service using e.g. an application skeleton, session
information, user profile information, or other system prop-
erties such as device capabilities and network status.

After a service has been selected, the composition engine
may invoke it. In particular when the service is deployed not
on the same network node as the composition engine, the
network costs, i.e. complexity measures such as latency or
bandwidth, between the composition engine and the service
can make a significant part of the end-to-end service costs,
e.g. end-to-end service latency. In cases of a distributed com-
position engine setup, e.g. where more than one composition
engine is deployed in a network, the network related costs
caused by service invocation can be reduced by selection of a
composition engine node with the smallest total cost impact.

An algorithm embodying a composition engine may create
a composite service by determining one constituent service
after another while taking the information mentioned before
into account. After the next constituent service is determined,
it may be executed and results of the execution become a part
of the session information and can be considered by the
selection of the next constituent service. Other service com-
position approaches like BPEL or BPML may support mainly



US 9,124,593 B2

11

static service selection, i.e. services are selected at design
time. The static service selection may be considered as a
special case of the service selection at run-time, i.e. the ser-
vice selection may not depend on any run-time information.
Therefore, the dynamic service selection may be considered
as a more generic case of the service selection.

FIG. 3 shows an example of the distributed composition
engine setup, with 3 composition engines 301, 303, 305, and
8 services sl, s2, . . ., s8. By way of example, while the first
composition engine 301 and the second composition engine
303 may invoke any of 8 services, the third composition
engine 305 may invoke only a subset of the services, e.g.
services s4, s5, . . ., s8, which may be also considered by the
selection of the composition engine. For each composition
engine and service pair, a cost function or a complexity mea-
sure that express the network cost between the respective
composition engine and the respective service, may be
defined, e.g. as cost(ce,s). If, for instance, a composite service
consists of 3 services, e.g. s1, s5, s8, then the total complexity
measures, i.e. total network costs, to run it on the first com-
position engine 301 (composition engine 1) are:

cost(composition enginel,s1)+cost(composition
enginel,s5)+cost(composition enginel,s8).

According to some implementations, in terms of network
related complexity measures, an optimum composition
engine in the network may be selected to run the composite
service. In this regard, it may be distinguished between an
initial selection of the best suitable composition engine and a
change of the composition engine during the execution of the
composite service so that a part, i.e. the number constituent
services, of the composite service is executed on one compo-
sition engine and another part, i.e. another number of con-
stituent services, is executed on another composition engine.

For an initial composition engine selection, the service
composition approach as described in the documents the WO
2008/119364 A1 and the EP 1 978 758 A1 incorporated herein
by reference creates composite services at run-time based an
application skeletons and taking into consideration the run-
time and network information. Hence, different composite
services can be created based on the same application skel-
eton. Moreover, the service composition approach supports
late-binding of constituent services. This means that the
selection of constituent services takes place just before their
execution. Which service is selected can also depend on
results of the execution of other services, therefore elements
of application skeletons are evaluated at run-time one after
another. Consequently, it is not always possible to known in
advance which services will be part of the composite service.

In order to estimate which services may be executed, the
composition engine selector can pre-evaluate application
skeletons as far as it is possible. Alternatively, a case-based
approach may be applied according to which information
gained from previous composite service executions can be
reused to order to estimate the new execution.

Application skeletons as e.g. disclosed in the WO 2008/
119364 Al and in the EP 1 978 758 Al may implement a
composite service by defining the set of participating ser-
vices, the structure of the composition, i.e. how individual
services should be connected in order to form a composite
service, and the control flow, i.e. in which order the individual
services will be executed. In order to specify a service to be
used as a component of composite services, the application
skeleton may define a service template. This service template
is a placeholder for a constituent service and describes the
service to be used by means of abstract properties rather than
by pointing to a concrete service deployment. Therefore,

10

15

20

25

30

35

40

45

50

55

60

65

12

these properties constitute requirements on the service to be
selected at run-time. They are therefore referred to as con-
straints of the service selection. For example, the following
constraint

(function="positioning’) & (min_accuracy="0.1 km”)
will select a service that provides the position of a mobile
subscriber. It also specifies that only positioning services with
a minimum accuracy of 100 m shall be considered.

According to some implementations, an application skel-
eton may go beyond a simple chain of service templates
defining the set and order of constituent service invocations.
In addition, conditional branches in the skeleton flow can be
defined, resulting in alternative behavior of the composite
service. The related branching conditions can for example
evaluate the results of previously executed services.

Due to the abstract descriptions of the constituent services
to be used within a service template, the application skeleton
constitutes an abstract model of the composite service. Con-
crete services are selected according to the constraints at
execution time rater than at design time. This characteristic is
referred to as late-binding. The advantage of this approach is
that a composite service can be designed without knowing the
exact set of available constituent services. Furthermore, con-
stituent services can be replaced by any compatible service
without changing the composite service.

By way of example, an application skeleton forming an
embodiment of the composite service information may com-
prise 4 elements: a start element, a service template, a condi-
tional statement, and an end element. Service templates and
conditional statement are particular interesting for the selec-
tion of the composition node, because they have a direct
impact on the resulted list of services. Other service compo-
sition approaches may have corresponding elements in their
languages, e.g. may invoke “and-if” elements in BPEL or
“action and switch” elements in BPML. Hence, the approach
disclosed herein may also be applied to other service compo-
sition approaches.

With regard to the service composition, skeletons may also
be used to describe the application logic. Further examples
for application logic description languages are Business Pro-
cess Execution Language (BPEL) or Business Process Mod-
eling Language (BPML). Such descriptions languages
describe how to compose the application in a way similarto a
program code that describes what should be done to achieve
a certain result. An instance of a composition is typically
created at run-time from such descriptions. In this sense, it is
similar to how a new process is created by an operating
system when it tries to execute the program that is saved on
disk. Such an instance of the composition, a “process”, is
called composition session. Some other technologies, e.g.
like BPEL and BPML, tend to call it BPEL process.

In order to estimate which constituent services will be a
part of the composite service, the aforementioned pre-evalu-
ation approach may be performed, according to which the
composition engine selector may go through all elements of
an application skeleton and may try to estimate what will be
the result of the evaluation of these application skeleton’s
elements at run-time. The resulted list of services may be used
to calculate the total costs to different composition engines.
Finally the composition engine with minimal costs may be
asked to execute the application skeleton by e.g. transmitting
the execution request.

Further, in the static service composition according e.g. to
the BPEL or BPML approaches, the results of pre-evaluation
can be completely reused during the execution. In more
dynamic approaches, the part of the results that not depend on
run-time can be reused.



US 9,124,593 B2

13

According to some implementations, also service tem-
plates, which are placeholders for a service, may be pre-
evaluated. A service template contains an expression that
describes which service should be executed. The composition
engine evaluates this expression at run-time against the ser-
vice repository and the run-time state. The results of the
evaluation of a service template are one or more services,
which may be considered as being equivalent so that any of
these services can executed. In the next step, the composition
engine may execute one of these equivalent services.

The pre-evaluation of the service templates means that
expressions of all service templates of an application skeleton
will be evaluated against the current service repository and
the current run-time state. In contrast to the execution of the
application skeleton, the services will not be executed during
the pre-evaluation. Information about the service’s costs to all
composition nodes is used in order to select the composition
node with the minimal costs impact. Further optimization
dimension is to recommend a specific service out of equiva-
lent services that would lead to the minimum network related
costs. Later, at skeleton’s execution phase, this recommenda-
tion may consider further selection criteria such as user/op-
erators preferences, server load, etc.

FIG. 4 shows an application skeleton with e.g. only two
service templates 401 and 404. By way of example, services
S1, S3 and S4 match the first service template 401 and ser-
vices S2 and S5 match the second service template 403. By
way of example, the following table depicts service complex-
ity measures, e.g. network costs such as latency in ms with
respect to two different composition engines:

Composition Engine 1 Composition Engine 2

Service S1 30 20
Service S2 10 20
Service S3 40 40
Service S4 50 10
Service S5 20 30

The optimal solution may be to select the service s4 for the
first service template and the service s2 for the second service
template and execute this application skeleton on the compo-
sition engine 2. This combination would add 30 of additional
costs to the end-to-end service costs. Without this optimiza-
tion it could be in the worst case 70 of additional costs (ser-
vice s4 and s5 on composition engine 1, or s3 and s5 on
composition engine 2). In order to find the minimum any
mathematical algorithms for multivariable linear function
optimization can be applied, e.g. the simplex algorithm.

According to some embodiments, also a pre-evaluation of
branches may be performed. In this regard, conditional ele-
ments allow to define parts of application skeletons compris-
ing branches that may depend on certain conditions, e.g. on a
run-time state or on a result of a service invocation.

FIG. 5 depicts, by way of example, an application skeleton
comprising service templates 501 and 503 arranged within a
block A, service templates 505 and 507 arranged within a
block B and service templates 509 and 511 arranged within a
block C. Furthermore, a conditional statement 513 with two
branches 515 and 517 is provided, the branches 515, 517
respectively guiding towards block B or block C. While, by
way of example, the service templates 501 and 503 in block A
may always be executed, the execution of templates 505, 507
in block B and templates 509 and 511 in block C may depend
on the results of the evaluation of the conditional statement
513. Thus, depending on the result of the conditional state-

10

25

30

35

40

45

55

14

ment 513, either service templates 505, 507 of block B or
service templates 509, 511 of block C will be executed.

Typically, the result of a conditional statement depends on
the run-time state or on the results of the services executed
before. Thus, conditional statements cannot be pre-evaluated
and in general all branches with their services are equiprob-
able. Therefore, all services inall branches may be considered
during the selection of the composition engine node. In order
to express probability of services, their network related costs
can be weighted accordingly. As shown in FIG. 5, the costs for
services of the block A could be weighted with 1 and costs for
services of block B and block C may be weighted with 5.

Instead of or in addition to the pre-evaluation of application
skeletons, case-based composite service estimation may be
applied. The case-based approach is based on the assumption
that the composition decisions relating to e.g. a selection of
services and branches are valid as long as all relevant infor-
mation is the same. This means that under the same condi-
tions the evaluation of the application skeleton results in the
same composite service. Consequently, instead of or in addi-
tion to the pre-evaluation of the application skeletons, the
information, e.g. a list of services, from previous executions
can be reused. The total network related costs of the compos-
ite service can be recalculated based on this service list or the
costs can be reused as well. The case-based approach makes
the time required for the selection of the composition engine
independent of application skeleton’s size. If the information
from previous executions is not enough to select the best
suitable composition engine, e.g. if a resulted service list was
different from execution to execution, a pre-evaluation of
application skeletons or a part of it can be applied.

FIG. 6 shows an embodiment of an application skeleton
having templates 601 and 603, wherein the service selection
may be performed independently from the run-time state. By
way of example, the template of FIG. 6 may describe a service
composition containing two services: Service 601 may be a
service that provides a call logger function and has Ericsson
as vendor, and service 603 may be a service with the support
for XMPP protocol.

Which particular service will be included in the composite
service may be decided by the composition engine at run-time
based on the composite service templates and on service
descriptions. By way of example, the service database may
contain 4 service descriptions 701, 703, 705 and 707 as
depicted in FIG. 7. Hence, the composition engine may create
a composite service containing the service A and the service
C.

FIG. 8 demonstrates a service selection which depends on
arun-time state. The application skeleton comprises 3 service
templates 801. 803, 805, and a conditional statement 807,
where, depending on a result of the conditional statement, the
service template 803 with constraints (protocol=xmpp) or the
service template 805 with constraints (protocol=sms) will be
evaluated.

According to some implementations, an executing compo-
sition engine may be changed during composite service
execution. For composite services comprising a big number
of constituent services and/or highly distributed and frag-
mented services it could be beneficial to change the executing
composition engine during the application skeleton execution
process. For instance, one part of application skeleton may be
executed on one composition engine and than the second part
on another composition engine. This would allow reducing
additional network costs in the aforementioned example by
the execution the service s4 on the composition engine 1 and
the service s2 on the composition engine 2 as shown in FIG.
3



US 9,124,593 B2

15

Different methods can be applied to detect, in particular
automatically, whether and when the executing composition
engine may be changed. Examples are:

Recalculating the costs for the remaining part of the appli-
cation skeleton permanently and change the executing
composition engine if it would improve total costs; and/
or

Recalculating the costs for the remaining part of the appli-
cation skeleton at all conditional elements after they
were evaluated and the branch was selected, which may
have an impact on the probability of the services; and/or

Recalculating the costs for the remaining part of the appli-
cation skeleton if there are changes in the costs. E.g.
subscribe-notify approach can be used to get notifica-
tions from network costs provider node; and/or

Recalculating the costs for the remaining part of the appli-
cation skeleton if some of the services become available
or unavailable; and/or

Recalculating the costs for the remaining part of the appli-
cation skeleton if some of composition engines become
available or unavailable.

In order to change the executing composition engine dur-
ing the composite service execution, the session information
related to this composite service may be transferred to new
composition engine. This process can cause some additional
network costs that have to be considered by the selection of
composition engine. Further, the interface of the composition
engine may be extended with the functions to support transfer
of execution processes.

According to some implementations, the approach
described herein may lead to an optimization of end-to-end
composite services costs by reduction of the network costs for
invocation of constituent services. This may improve the user
experience as shorter delays may be expected until the
required serviceis setup. Also a given application server node
that works with the service composition technology and that
is enhanced according to the principles described herein may
become a higher capacity with respect to users that can be
served due to the decreased effort needed to set up a single
composite service.

Further, because of its general nature the service composi-
tion technology it can be used outside of IMS context. Thus,
a composition engine according to the above definitions as
well as BPEL and BPML engines can play the role of a
service engine in Enterprise Service Bus (ESB) and used to
create composite service in an enterprise context. Distributed
deployment of service engines can be applied in such contexts
as well. Thus, above embodiments do not only refer to com-
position engines but may also refer to a broader field of
distributed service compositions running in clustered, cloud
or ESB environments.

An embodiment refers to a system for managing an execu-
tion of a composite service, the composite service comprising
constituent services, said system being adapted to perform the
method as described.

The particular combinations of elements and features in the
above detailed embodiments are exemplary only; the inter-
changing and substitution of these embodiments with other
embodiments disclosed herein are also expressly contem-
plated. As those skilled in the art will recognize, variations,
modifications, and other implementations of what is
described herein can occur to those of ordinary skill in the art
without departing from the spirit and the scope of the inven-
tion as claimed. Accordingly, the foregoing description is by
way of example only and is not intended as limiting. The
invention’s scope is defined in the following claims and the

25

30

35

40

45

50

55

60

65

16

equivalents thereto. Furthermore, reference signs used in the
description and claims do not limit the scope of the invention
as claimed.

The invention claimed is:

1. A method for managing an execution of a composite
service comprising constituent services, the method compris-
ing:

providing first service complexity measures indicating a

complexity related to executing a number of constituent
services of the composite service by a first service
execution node;

providing second service complexity measures indicating

a complexity related to executing the number of con-
stituent services of the composite service by a second
service execution node;

determining a first total complexity measure based on the

first service complexity measures;

determining a second total complexity measure based on

the second service complexity measures; and

selecting the first service execution node or the second

service execution node for executing the number of con-
stituent services of the composite service dependent on
at least one of the first total complexity measure and the
second total complexity measure;

wherein the service complexity measures are determined

based on:

static information comprising at least one of a composite

service template, a service description, and a service
location; and

dynamic information comprising a result of at least one

previous execution of the composite session;
wherein selecting the first service execution node or the
second service execution node further comprises:

selecting the first service execution node during run-time if
the first total complexity measure does not exceed the
second total complexity measure; and

selecting the second service execution node during run-

time if the second total complexity measure does not
exceed the first total complexity measure.

2. The method of claim 1, further comprising initiating the
execution of the number of constituent services of the com-
position service by the selected service execution node.

3. The method of claim 1, further comprising transmitting
session information relating to the execution of the composi-
tion service to the selected service execution node for execut-
ing the composite service.

4. The method of claim 1, further comprising:

determining an initial complexity measure accumulated

during a previous execution of the composite service;
and

selecting the first or the second service execution node in

further dependency on the initial complexity measure.

5. The method of claim 1, wherein the composite service
comprises a further number of constituent services, the
method further comprising:

providing third service complexity measures indicating a

complexity related to executing the further number of
constituent services by the first service execution node;

providing fourth service complexity measures indicating a

complexity related to executing the further number of
constituent services of the composite service by the sec-
ond service execution node;

determining a third total complexity measure based on the

third service complexity measures;

determining a fourth total complexity measure based on

the fourth service complexity measures; and



US 9,124,593 B2

17

selecting the first service execution node or the second
service execution node for executing the further number
of constituent services of the composite service depen-
dent on at least one of the first total complexity measure,
the second total complexity measure, the third total com-
plexity measure, and the fourth total complexity mea-
sure.

6. The method of claim 1, wherein the composite service
comprises a further number of constituent services, the
method comprising:

providing third service complexity measures indicating a

complexity related to executing the further number of
constituent services by the first service execution node;

providing fourth service complexity measures indicating a

complexity related to executing the further number of
constituent services of the composite service by the sec-
ond service execution node,

determining a third total complexity measure based on the

third service complexity measures;

determining a fourth total complexity measure based on

the fourth service complexity measures;

determining a minimum composite complexity measure

based on the total complexity measures; and

selecting the first service execution node or the second

service execution node to execute the respective number
of constituent services at the minimum composite com-
plexity measure.

7. The method of claim 1, further comprising evaluating a
composite service information to determine the number of
constituent services which are to be executed when executing
the composite service, the composite service information
indicating at least one of a structure of the composite service,
the constituent services, and session information relating to
the execution of the composition service.

8. The method of claim 1, further comprising evaluating a
composite service information to determine the first or the
second service complexity measures dependent on a condi-
tional execution of at least one constituent service when
executing the composite service.

9. The method of claim 1, further comprising determining
the service complexity measures based on pre-stored service
complexity measures related to previous executions of the
constituent services or of the composite service.

10. The method of claim 1, further comprising determining
the service complexity measures based on dynamic informa-
tion, the dynamic information comprising at least one of
composite session data, statistical records about service
execution, a network load, and a latency between network or
session nodes of at least one previous execution of the com-
posite session.

11. The method of claim 1, wherein the first total complex-
ity measure or the second total complexity measure is
obtained by:

summing up the respective service complexity measures;

or

evaluating a complexity function comprising one of a lin-

ear complexity function and a non-linear complexity
function using the service complexity measures as func-
tion variables.

12. The method of claim 1, wherein the composite service
comprises at least one of:

an Internet Protocol Multimedia Subsystem (IMS) com-

posite service;

an instance of a Business Process Execution Language

(BPEL) process;
an instance of a Business Process Modeling Language
(BPML) process; and

5

15

20

25

30

35

40

45

50

55

60

65

18

an instance of an Enterprise Service Bus (ESB) composite
service.

13. The method of claim 12, wherein the first execution

node or the second service execution node comprises:

a composition execution agent configured to operate
according to the IMS technology; or

a composite service engine configured to operate accord-
ing to the IMS technology; or

a computing node in a distributed computing network com-
prising a cloud computing network or an ESB environ-
ment.

14. The method of claim 1, wherein the service complexity

measures comprise at least one of:

latencies related to executing the respective constituent
service by the respective service execution node;

time delays related to a data transfer over a communication
network between a service location and the respective
service execution node; and

network resources allocated to the respective service
execution node for executing a respective constituent
service.

15. A service execution management entity for managing
an execution of a composite service, the composite service
comprising constituent services, the service execution man-
agement entity comprising:

a complexity provider configured to provide:

first service complexity measures indicating a complexity
related to executing a number of constituent services of
the composite service by a first service execution node;
and

second service complexity measures indicating a complex-
ity related to executing the number of constituent ser-
vices of the composite service by a second service
execution node;

a complexity determiner configured to determine a first
total complexity measure based on the first service com-
plexity measures and a second total complexity measure
based on the second service complexity measures; and

a service execution node selector configured to select the
first service execution node or the second service execu-
tion node for executing the number of constituent ser-
vices of the composite service dependent on at least one
of the first total complexity measure and the second total
complexity measure;

wherein the service complexity measures are determined
based on:

static information comprising at least one of a composite
service template, a service description, and a service
location; and

dynamic information comprising a result of at least one
previous execution of the composite session;

wherein selecting the first service execution node or the
second service execution node further comprises:

selecting the first service execution node during run-time if
the first total complexity measure does not exceed the
second total complexity measure; and

selecting the second service execution node during run-
time if the second total complexity measure does not
exceed the first total complexity measure.

16. The service execution management entity of claim 15,
further comprising a transmitter configured to transmit ses-
sion information relating to the execution of the composition
service towards the selected service execution node for
executing the composite service.

17. The service execution management entity of claim 16,
wherein the transmitter is further configured to transmit an
execution request towards the selected service execution node



US 9,124,593 B2

19

to initiate the execution of the number of constituent services
of the composition service by the selected service execution
node.

18. A computer program product stored in a non-transitory
computer readable medium for managing an execution of a
composite service comprising constituent services, the com-
puter program product comprising software instructions
which, when run on a computer, causes the computer to:

provide first service complexity measures indicating a

complexity related to executing a number of constituent
services of the composite service by a first service
execution node;

provide second service complexity measures indicating a

complexity related to executing the number of constitu-
ent services of the composite service by a second service
execution node;

determine a first total complexity measure based on the first

service complexity measures;

determine a second total complexity measure based on the

second service complexity measures; and

select the first service execution node or the second service

execution node for executing the number of constituent
services of the composite service dependent on at least
one of the first total complexity measure and the second
total complexity measure;

wherein the service complexity measures are determined

based on:

static information comprising at least one of a composite

service template, a service description, and a service
location; and

dynamic information comprising a result of at least one

previous execution of the composite session;
wherein selecting the first service execution node or the
second service execution node further comprises:

selecting the first service execution node during run-time if
the first total complexity measure does not exceed the
second total complexity measure; and

selecting the second service execution node during run-

time if the second total complexity measure does not
exceed the first total complexity measure.

15

20

20

19. The computer program product of claim 18, wherein
the computer is disposed in a programmable network entity.
20. A system for managing an execution of a composite
service, the composite service comprising constituent ser-
vices, the system configured to perform a method for manag-
ing an execution of a composite service comprising constitu-
ent services, the system comprising:
a processor configured to:
provide first service complexity measures indicating a
complexity related to executing a number of constituent
services of the composite service by a first service
execution node;
provide second service complexity measures indicating a
complexity related to executing the number of constitu-
ent services of the composite service by a second service
execution node;
determine a first total complexity measure based on the first
service complexity measures;
determine a second total complexity measure based on the
second service complexity measures; and
select the first service execution node or the second service
execution node for executing the number of constituent
services of the composite service dependent on at least
one of the first total complexity measure and the second
total complexity measure;
wherein the service complexity measures are determined
based on:
static information comprising at least one of a composite
service template, a service description, and a service
location; and
dynamic information comprising a result of at least one
previous execution of the composite session;
wherein selecting the first service execution node or the
second service execution node further comprises:
selecting the first service execution node during run-time if
the first total complexity measure does not exceed the
second total complexity measure; and
selecting the second service execution node during run-
time if the second total complexity measure does not
exceed the first total complexity measure.

#* #* #* #* #*



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,124,593 B2 Page 1 of 1
APPLICATION NO. : 13/519925

DATED : September 1, 2015

INVENTOR(S) : Levenshteyn et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page, in the figure, for Tag “1217”, in Line 1, delete “complexty” and insert
-- complexity --, therefor.

In the drawings:

In Fig. 1, Sheet 1 of 8, for Tag “1217, in Line 1, delete “complexty” and insert -- complexity --,
therefor.

In Fig. 5, Sheet 5 of 8, for Tag “513”, in Line 1, delete “condltlonal” and insert -- conditional --,
therefor.

In the specification:

In Column 2, Line 62, delete “then™ and insert -- than --, therefor.

In Column 9, Line 1, delete “Constituent” and insert -- constituent --, therefor.
In Column 12, Line 20, delete “rater” and insert -- rather --, therefor.

In Column 14, Line 62, delete “than” and insert -- then --, therefor.

In Column 14, Line 67, delete “3” and insert -- 3. --, therefor.

Signed and Sealed this
Twenty-eighth Day of June, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office



